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A numerical code based on the SIMPLE algorithm and defined on a nonstaggered grid 
was used to simulate the natural convection in a cavity heated by the nonuniform 
absorption of radiation entering through part of the surface. After the code was validated 
against laboratory experiments, it was used to extend the results over a larger range of 
radiation parameters than were available in the laboratory. The extended results were used 
to derive empirical relations that could be used to predict the intrusion velocities and time 
scales in small lakes. 
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1. I n t r o d u c t i o n  

Local concentrations of suspended particulate matter on the 
surface of lakes and reservoirs give rise to a reduction in the 
penetration of solar radiation through the surface. The 
particulate matter may be of either animate (for example, 
photoplankton) or inanimate (for example, detrital material) 
origin, but in both cases the material is usually dark, and the 
particles cause an increase in the path length of the incoming 
radiation, effectively preventing the solar radiation from 
penetrating beyond the depth of the turbid patch. The 
absorption of solar radiation in turbid waters can be up to two 
orders of magnitude greater than in clear waters (Kirk 1986). 

The presence of floating vegetation mats (Bowmaker 1976) 
or hyperscums (Zohary and Madeira 1990), for example, gives 
rise to a similar effect, in that the solar radiation is prevented 
from entering the body of the water column. In both cases, the 
region beneath the patch is shielded from radiation, whereas 
the regions beyond the extent of the patch are not and are 
consequently heated at a higher rate. The result is a relatively 
cool region beneath the patch, with a corresponding horizontal 
pressure gradient. The resulting flow from the open to the 
shaded region may be of considerable significance biologically, 
in that the supply of nutrients to a biologically active patch 
may be provided by this flow. Thus the rate of supply may be 
limited in some sense by the development of this flow, and a 
natural limitation on the patch size may occur. In any case, the 
relative time scales of transport and uptake of nutrients are of 
some interest to limnologists. 

This mechanism of horizontal transport in lakes was 
discussed by Patterson and Imberger (1990), and a scaling, 
numerical, and experimental analysis of the mechanism was 
described by Coates and Patterson (1993), hereinafter referred 
to as CP. Their work extended the analyses of Patterson (1984) 
and Trevisan and Bejan (1986), both of which dealt with the 
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natural convection flows driven by horizontally varying 
internal heat sources. The latter paper in particular considered 
the case of a horizontally infinite region in which the 
distribution of sources was such that the differential absorption 
of radiation was modeled by two regions, each with constant 
but different source intensities and each of different depths. In 
CP, the constant source was replaced by one in which the 
intensity varied in a decaying exponential manner with depth, 
modeling the attenuation of radiation intensity with increasing 
depth. This introduced an additional length scale into the 
model, of which the Trevisan and Bejan model was a special 
case. 

The specific problem examined by CP was that of a cavity 
in which one half of the surface was opaque to incoming 
radiation, while the remainder of the surface was transparent, 
allowing the water beneath to be heated by absorption of the 
radiation. The water was initially stationary and isothermal. 
The radiation source was instantaneously increased to and ' 
maintained at a fixed value. An analysis of the relationship 
between the time, length, and velocity scales showed that a 
number of transient flow regimes were possible, depending on 
the relationship between the various parameters of the problem. 
However, it was also shown that virtually all naturally 
occurring problems fell into one regime for which Gr > 
q4h4Pr-3, where the Grashof number Gr and the Prandtl 
number Pr are defined, respectively, by 

Gr - g~F°h~ (1) 
Po Cr ,v3 

and 

V 
Pr = - (2) 

K 

and c¢ is the coefficient of thermal expansion, v the kinematic 
viscosity, x the thermal diffusivity, Po the reference density, and 
Cp the specific heat at constant pressure of the water. The depth 
of the cavity is h and the gravitational acceleration is 9, while 
the total intensity of radiation at depth z is given by Beer's Law: 

F(z) = F o exp[-r/bZ ] (3) 
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where F o is the bulk or effective radiation intensity at the 
surface (in jm-2sec-1) ,  while r/b is the bulk or effective 
attenuation coefficient (in m-1). Equation 3 may be written 
more accurately as 

N 

F(z) = ~. F ° exp[--rhz ] (4) 
i = 1  

where the N discrete wavelength bands are characterized by 
surface intensities F ° and attenuation coefficients r h. 

In this regime, the initial stage of the flow was an intrusion 
traveling from the heated to the shaded part of the cavity 
beneath the radiation-blocking region. According to the CP 
scaling analysis, the intrusion was characterized by a sequence 
of velocity and time scales as the flow developed and the 
various balances changed. In particular in this regime, the 
intrusion flow was initially characterized by a balance between 
the unsteady term and the buoyancy-induced pressure gradient, 
but after a time scale of order 

tc ~ \ ~rva, I (5) 

there was a switch to a balance between inertia and buoyancy, 
with a velocity scale given by 

(Grvaty/2 
Ul ~ \ ~ - j  (6) 

The balance changed again at time tE, when the transport of 
heat away by the intrusion balanced the input of heat through 
the surface, with a resulting so-called energy limited velocity 
scale of 

(Grval~ 1/3 
UE ~ \ ~ 2 ~ . ]  (7) 

where l E is the length of the exposed surface, and the time scale 

tE is given by 

~ ( h,l 2 y / a  
tE \ ~ ]  (8) 

CP undertook an extensive experimental and more limited 
numerical verification of the scaling, and to a large degree 
confirmed these and other results obtained for this regime. 

The results of CP were limited, however, by the relatively 
small range of radiation parameters available in the laboratory, 
and the O(1) constants in some of the scaling relationships were 
not conclusively obtained. In this paper, a series of numerical 
experiments is described that extends the parameter range and 
allows the coefficients relating the radiation parameters to the 
flow characteristics to be better defined. These coefficients then 
allow estimates to be made of the net horizontal transport 
under a floating patch in a lake or reservoir. 

2. Numer ica l  scheme 

Under consideration is a rectangular cavity of height h and 
length (l +/E), where l is the shaded length. All the boundaries 
are nonslip and rigid. While it is appreciated that in real 
situations with floating plant layers, the upper surface is a free 
surface, experiments by Coates and Ferris (1994) showed that 
this boundary type is relatively unimportant. However, since a 
nonslip boundary was used in the experiments of CP, we choose 
to retain it in the simulations that follow. The thermal 
boundary conditions are that the end walls are held at 
temperature To and that the upper and lower boundaries are 
assumed insulated. This latter assumption is equivalent to 
saying that the surface heat transfers by conduction and by 
long-wave radiation are small compared with the absorption 
of solar radiation, and that all heat input to the cavity through 
the surface is by the absorption of the solar radiation. Initially, 
the fluid is stationary and at temperature T O (see Figure 1). At 
time t = 0, the total surface radiation is instantaneously 

N o t a t i o n  

* Indicates a dimensioned parameter in the 
nondimensional scheme 

A Aspect ratio h/l (shaded region) 
A E Aspect ratio h/l E (illuminated region) 
D Intrusion thickness 
d Nondimensionalized intrusion thickness 
F(z) Total intensity of radiation at depth z 
F ° Radiation intensity at the surface within waveband i 
Fo Bulk or effective radiation intensity at the surface 
Cp Specific heat at constant pressure 
g Gravitational acceleration 
Gr Grashof number 
H(x) "Illumination" step function 
h Depth of the cavity 
i Summation index 
l Length of shaded region; nondimensionalized length 

of travel 
lE Length of illuminated regime 
N Number of wavebands 
Pr Prandtl number 
p Pressure (relative to hydrostatic) 
r x Horizontal grid expansion factor 
r= Vertical grid expansion factor 
T Temperature 

To Initial temperature 
t Time 
tc Time to the inertia-buoyancy balance 
tE Time to the energy-limited regime 
te Measured time to the energy-limited regime 
u Horizontal velocity 
u~ Energy-limited velocity scale 

Measured energy-limited velocity scale 
u~ Inertial velocity scale 
V Volume 
W Intrusion width 
w Vertical velocity 
x Horizontal axis 
z Vertical axis 

Greek symbols 

Coefficient of thermal expansion 
Axl Initial horizontal grid size 
AZl Initial vertical grid size 
~/i Attenuation coefficient within waveband i 
r/b Bulk or effective attenuation coefficient 
x Thermal diffusivity 
v Kinematic viscosity 
Po Reference density 
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Figure 1 A sketch of the cavity with its dimensionless boundary 
conditions. The initial conditions are u = w = 0  and T = 0  
everywhere 

increased from zero to its working value and maintained at 
that value thereafter. 

The equations that describe the subsequent motion are the 
usual Boussinesq equations, written in nondimensional form as 

du t~w 
- -  + - -  = 0 ( 9 )  
Ox Oz 

- - + A  E u + w  = -  + 
Ot ~xx ~z t~x \Grr] \~-x 2 -I- OzZJ (10) 

Ow dw tgw Op E + 
- - +  A E u - - +  w = -  + Ot Ox ~z ~z Grr ~x  2 0z 2 f + AE T 

(11) 

and 

OT A E ( u O T + w O T )  1 (A2 ) t / 3 (O2T  t~2T "] 
- - +  

\ Prr + 

N 

+ H(x) ~ th F° exp[- thz]  (12) 
i = 1  

where the aspect ratio based on the exposed length is A E = h/l E. 
The function H(x) defines the shaded and unshaded regions 

of the surface, so that 

{01 f o r 0 < x < A - ~  
H(x) = (13) 

forA -1 < x < (A -1 + A~ -1) 

In Equations 9 to 12, the variables have been non- 
dimensionalized by the following scheme: 

x* z* vt* /Gr'~ 1/3 

hu* hw* 
U - -  W ~ 

v(GrAE) 1/3' v(GrAE) 1/3 

9~h3(T * - To) , F *° 
r -  FO-  Fo 

t/, = q'h, p = - -  (14) 
po v2 \ O r 2 /  

where the starred variables are dimensional. These scales arise 

naturally when the velocities are scaled against the energy- 
limited intrusion velocity. 

With this nondimensionalization, the scaling relations 
(Expressions 6 to 8) reduce to the simple forms 

t E ~ AE 4/3 (15) 

and 

u I ~ t 1/2 (16) 

u E ~ A~ 2/3 (17) 

The numerical scheme used to solve Equations 9 to 12 is 
based on the SIMPLE scheme, but defined on a nonstaggered 
grid. The problems of nonellipticity, resulting in oscillations of 
the pressure field (which can occur on a nonstaggered grid), 
were overcome by the use of an elliptic pressure term derived 
by Armfield (1991), and is fully described there. The 
discretization is described in Armfield and Patterson (1991); in 
brief, however, finite volumes are used to convert the 
derivatives to second-order central differences, with the 
advective terms approximated by the QUICK scheme of 
Leonard (1979) and the diffusive terms on the irregular grid by 
the scheme of Patterson (1983). The time integration is carried 
out by a second-order Crank-Nicholson predictor correcter 
method. The discretization produces a block tridiagonal 
matrix, inverted by an ADI method. 

3.  G r i d  t e s t s  

In order to resolve the fine scales of the flow near the end walls, 
near the surface, and in the region of the light-dark boundary, 
an expanding mesh similar to that used by Armfield (1991) was 
implemented. The mesh was finest near the end walls, the 
light~zlark boundary, and the upper surface. Since the flow is 
driven by the radiation absorption in the upper part of the 
cavity and is influenced strongly by its interaction with the end 
walls, the lower surface plays only a minor role, and the mesh 
is not compressed there. The mesh expands away from the walls 
at constant rates in the horizontal and vertical directions of rx 
and r~ from initial values of Ax 1 and Azl. In the case of the 
horizontal mesh, the mesh compresses again after the midpoint 
of each half of the cavity so that a fine mesh is achieved in the 
region of the l ight, lark boundary. To check the dependency 
of the numerical result on the actual grid, a number of test 
simulations were performed with the grid parameters shown in 
Table 1. 

Although a number of variables were compared from the 
different runs, only the isotherms in the shaded region at time 
t = 2.92 are shown in Figure 2. The differences between the 
runs are typical of those at other times, and of other variables. 
Clearly, the differences between the various runs is slight in the 

Table I A summary of the initial dimensionless grid sizes Axl and 
Az~ and the expansion factors rx and rz for the grid test runs. The 
resulting number of mesh points (nodes) is also tabulated 

Horizontal grid Vertical grid 

Run Axl r x Nodes AZ 1 r z Nodes At 

1 0.01 1.05 94 0.001 1.05 82 0.005 
2 0.005 1.05 146 0.001 1.05 82 0.005 
3 0.01 1.005 182 0.001 1.025 133 0.005 
4 0.01 1.05 94 0.001 1.05 82 0.0025 

Note: The test simulation used a Grashof number of Gr = 3.88 x 10 s. 

220 Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 



Numerical simulations of natural convection: M. J. Coates and J. C. Patterson 

0.00 

0.02 

0.04 

~ 0.~ 

0.08 

0.10 

0.12 

- Run I 

,,'. • .-" ...... Run 2 

" "7" ,." ......... Run 3 

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Distance from light/dark boundary 

Figure 2 The temperature contours in part of the shaded region 
for the three runs testing the grid parameters. Run 4 wi th the finer 
time interval is not shown, since it was indistinguishable from run 
1. The dimensionless temperature contour values are from 1.85 (left 
or outermost contour) to 9.25 (right or innermost contour) at 
intervals of 1.85 

of the numerical temperature-time traces from the experi- 
mental traces at approximately t = 4 is due to the interaction 
of the intrusion with the far wall. At this time, the pressure 
wave begins traveling back along the tank, decelerating the 
intrusion locally. As the water is temporarily slowed, there is 
a brief accumulation of hotter water, manifested as a sudden 
steep rise of the temperature traces. This wave is first seen at 
the location near the far wall (x = 0.28) and appears 
progressively later in the locations further from the wall. 

While the agreement between experiment and simulation is 
good, Figure 3 suggests that the numerical velocities are slightly 
greater than their experimental equivalents. This result is also 
suggested by the plot of the maximum horizontal velocity at 
the light/dark boundary against t 1/2 for both the experiment 
and the simulation (Figure 4). The faster passage of the 
simulated intrusion is reflected by the fact that the experimental 
intrusion takes longer to reach a given velocity than does the 
simulation, so that the plot of the numerical velocities is shifted 
to the left to earlier times. However, the important point here 
is that the data of Figure 4 show that both experiment and 
simulation have the linear dependence on t 1/2 expected for the 
inertial regime from Equation 16. 

regions close to the surface and the light-dark boundary, with 
the maximum deviation occurring in the region where the 
coarsest grid is located. Run 4, with the shorter time step, is 
indistinguishable from Run 1 and is not shown. Even so, the 
error between the coarsest and finest grids is at most only 5%; 
although this error could be reduced by further reduction in 
both the initial grid spacing and the expansion factors, doing 
so was not justified, since the simulations with these grids 
compare well with the experimental results, as described below. 
The parameters from run 1 were used in the subsequent 
numerical experiments. 

Table 2 A comparison between the dimensionless intrusion 
thickness (d) and distance traveled (/) obtained from the experiment 
and its numerical simulation 

Experimental N umerical 

t d I d / 

0.42 0.033 0.050 0.033 
0.84 0.100 0.133 0.083 0.117 
1.26 0.133 0.267 0.133 0.250 
1.68 0.167 0.384 0.167 0.384 
2.10 0.200 > 0.534 0.217 0.517 
2.52 0.250 > 0.534 

4.  C o m p a r i s o n  w i t h  e x p e r i m e n t s  

The numerical method was verified by comparison with the 
three laboratory experiments described in detail in CP. Only 
one of these is discussed here, since the comparison in all cases 
was similar. The case considered was for the parameter values 
G r = 4 . 3 3  x 108 , P r = 7 . 0 4 ,  and A = A E = I .  Using the 
methods described in CP, the incoming radiation was split into 
three bands with (nondimensional) intensities of 0.56, 0.34, and 
0.21, and attenuation coefficients of 43.5, 4.5, and 0.75, 
respectively. 

The intrusion thickness (d) and the distance it has traveled 
(/) were measured for both the experiment and the simulation 
(Table 2). These results are in good agreement, providing one 
confirmation of  the validity of the code. 

As another comparison, numerical temperature-time series 
were compared in Figure 3 with the series obtained from 
thermistor measurements during three separate but identical 
runs of the experiment. The thermistors were located at the 
four (dimensionless) horizontal positions of x = 0.28, 0.50, 0.72, 
and 0.93. Note that the light/dark boundary was located at 
x = 1, so that all thermistors were in the shaded region. The 
dimensionless depth of the thermistors was 0.07 (z = 0.93). The 
passage of the intrusion is reflected in the lift-off times of the 
temperature traces, and Figure 3 shows that there is good 
agreement between the experiments and the numerical 
simulation. The slope of the temperature-time traces is a 
reflection of the intrusion velocity, and again, Figure 3 shows 
that there is good agreement between the two. The divergence 

. . . .  ~ I  -¸ 
2.O- 

- ...... Experiments ..... ~.. _~.:.~ 

Simulation 

, 2 , : :  ..... ,/,: 
1.5 . . . . .  :-"-": =; .... ,-"~;'--"" 

.-" :'~" . ..... 2= 

0,5 0,50 

00 0 , ,  . . . . . . . . .  

0.0 1.0 2.0 3.0 4.0 5.0 

Figure 3 The temperature increases from the thermistor data are 
compared with a simulated temperature time series. In the 
experiments, the thermistors were located at a depth of 0.07 
(z = 0.93) in the shaded region at the four horizontal locations 0.28, 
0.50, 0.72, and 0.93. The data from the three repeated runs of the 
experiment are the dashed lines, whi le the simulation is the solid 
line. The traces for each horizontal location are offset from each 
other, wi th the corresponding zero temperature (horizontal) axis 
shown as the dotted line 
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Figure 4 The maximum horizontal velocity at the light/dark 
boundary plotted as a function of t for the maximum intensity 
experiment and its simulation. The straight line is the inertial velocity 
predicted by the scaling 

5 .  R e s u l t s  

Finding the constant of proportionality for Equation 16 for 
the mean inertial velocity is of importance, since an estimate 
of the volume V transported during the inertial phase may then 
be made. The inertial phase may last for some time, as the 
following example shows. Consider a small pond of depth 
h ~ 1 m and exposed length of lE ~ 30 m, illuminated by solar 
radiation with an intensity of approximately 600 Wm -2. The 
Grashof number will be 2.9 x 1011, and using Equation 8, the 
flow is expected to become energy limited by t E ~ 1500 s. For 
a small lake, with h ~ 3 m and l~ ~ 300 m, this time increases 
to approximately 6000 s. Consequently, there is a considerable 
period for which the inertial regime is significant. 

The data of Figure 5 show that the early stage of the flow 
is in good agreement with the inertial regime, with no 
dependence on the Grashof number, as expected from the 
scaling analysis. The slope of the line of best fit to the data, as 
shown in Figure 5, gives the constant of proportionality as 1.03, 
and in general, the mean inertial velocity can be found from 
the simple relation 

= 1.03(t 1/2 -- 0.55) (20) 

The time offset (t 1/z = 0.55) arises from the fact that a small 
time to defined by Equation 5, must pass before the flow 
switches to the inertial-buoyancy balance. 

One difficulty in generalizing the experimental results is that 
the intrusion becomes distorted by the interaction with the far 
wall at approximately the same time as it becomes energy 
limited (Equation 8). To overcome this limitation, a series of 
numerical experiments was performed using a shaded region 
that was twice as long as that of the experiments. In this case, 
the aspect ratio for the shaded region became A = h/ l  = 0.5, 
while that of the exposed region remained at A~ = h/lE = 1. 

The results from these experiments enabled general 
(empirical) relations to be determined, allowing the simple 
determination of the typical velocity and time scales in practical 
applications. The development of these relations is discussed 
below. 

5.1. F ixed a t tenua t ion  coef f i c ien t  

Numerical experiments were performed using a range of values 
for the Grashof numbers as tabulated in Table 3, with the single 
value of r /=  10 for the attenuation coefficient. The appropriate 
velocity with which to characterize the intrusion is the mean 
velocity, since this is a measure of the volume transferred by 
the intrusion. Integrating the velocity profile over the 
dimensionless intrusion depth D gives 

W t  - u (z )dz  (18) 

as the volume V transfer over the time t, where W is the 
dimensionless width of the intrusion. This is converted to an 
effective or mean velocity over some vertical length scale & 
using t~ = V / r W t .  The appropriate vertical length scale 6 is 
the bulk radiation scale l/r/since, in general, the intrusion depth 
is not known. Thus, Equation 18 becomes 

f° ~ = t I u (z )dz  (19) 
0 

Using Equation 19, the mean inertial velocity was calculated 
for the numerical experiments, and these have been plotted 
against t 1/2 in Figure 5. Here there is a very good fit to the line 
of the inertial regime, confirming the scaling over four orders 
of magnitude of Grashof numbers. 

Table  3 The transition times and mean f low 
velocities for the energy limited regime over a 
range of Grashof numbers 

Gr t e u-~ 

1011 3.13 1.05 
109 3.10 1.00 
108s 3.06 1.00 
108 3.14 0.98 
107.5 - -  - -  

Note: The transition times te measured from the 
numerical results are the times at which the 
f low velocity becomes constant. The attenuation 
coefficient was fixed at t / =  10 in these 
experiments. Energy limited results were not 
available for the Gr = 107.5 experiments. 
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Figure 5 The mean horizontal velocities at the l ight/dark boundary 
from the numerical experiments of Table 3 plotted as a function of 
t. The straight line is the least squares fit to the inertial velocity 

222 Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 



Numerical simulations of natural convection: M. J. Coates and J. C. Patterson 

At the transition time t~, the flow velocities should scale as 
the energy-limited velocity scale (Equation 17). Since Equation 
17 is independent of time, the flow velocities should remain 
constant in time until other balances become important. The 
data of Figure 5, however, show that this is not the case, in 
that the observed velocity decreases in time once the flow 
becomes energy limited. This finding is due in part to the fact 
that the intrusion continues to thicken, proportional to ,v/~, 
as it entrains the fluid below. However, the volume transfer 
must remain constant once the energy-limited flow is reached; 
otherwise, more energy will be transferred out with the larger 
volume than the energy entering. This will decrease the forcing 
term, reducing the velocity until the flow is again in balance. 
Thus, as the intrusion continues to thicken as a function of t ~/2, 
its velocity must decrease at the same rate to keep the volume 
transfer constant. While the velocity data of Figure 5, for times 
greater than that at which the peak velocity occurs, are not 
conclusive, they are consistent with a linear decrease with 
respect to t 1/2. Consequently, we will take the maximum value 
of the data of Figure 5 as representative of the energy-limited 
velocity for each experiment, and the time at which the 
maximum value is attained will be used as the transition time. 

These measured transition times te and velocities ~ ,  
summarized in Table 3, allow the constants of proportionality 
for Equations 15 and 17 to be determined. The te data indicate 
that, in general, 

tE = 3.1A~ 4/3 (21) 

for the dimensionless energy limited time scale, with a 
regression coefficient of r 2 = 1.000. However, the ~ data show 
that the mean velocity retains a weak dependence on the 
Grashof number, which is perhaps not unexpected, since the 
scaling assumes a uniform steplike absorption of radiation with 
depth, whereas in fact there is a sharp dependence with the 
greatest absorption near the surface. A least squares analysis 
yields the relation 

u---~ = (0.80 + 0.02 loglo Gr)A~ -2/3 (22) 

for the dimensionless energy-limited mean velocity, with a 
regression coefficient of r 2 =  1.000. However, because the 
dependence on Gr is weak, a simpler expression can be used 
for the mean velocity over the range 10 a < Gr < 1012 with only 
a small error. This expression is 

u---~ = Aft 2/3 (23) 

These relations allow a simple determination of the time to the 

Table 4 The dimensionless transition times and f low velocities for 
the energy-l imited regime over a range of dimensionless attentua- 
tion coefficients 

Run r h r t t e 

A 31.6 31.6 3.10 1.07 
B 10 10 3.10 1.00 
C 5.62 5.62 3.38 0.90 
D 3.16 3.16 3.38 0.70 
E 31.6, 10 11.7 3.38 0.93 
F 10, 3.16 5.0 4.22 0.88 
G 100, 31.6, 10 13.2 4.22 0.91 
H 31.6, 10, 3.16 6.5 4.50 0.99 

Note: The run codes identify the different numerical runs in Figure 
6. The fixed Grashof number for these experiments was 10 s, whi le 
the effective attenuation coefficient r/ for each run is tabulated. The 
attenuation coefficients t/i for the mult iple band experiments (E --* H) 
are separated by commas. 
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Figure 6 The mean horizontal velocity at the l ight/dark boundary 
plotted against t for the experiments of Table 4. The run codes are 
those of Table 4 

onset of the energy-limited regime, and the mean velocity 
within that regime over a range of Grashof numbers. 

5.2. Fixed Grashof numbers 

A second series of numerical experiments was performed to 
determine any further dependence on the attenuation 
coefficient beyond that predicted by the scaling. These 
experiments used a fixed value for the Grashof number of 109 
and covered a range of attenuation coefficients, including 
several multiple-band models. The effective or bulk values of 
the attenuation coefficients in these multiple-band experiments 
were obtained as outlined in CP. For  the purposes of the 
experiments, the models had equal proportions of energy in 
each of the bands (50% in each of the two-band and 33% in 
each of the three-band models). 

The range of dimensionless attenuation coefficients ~/i used 
in the experiments is shown in Table 4, along with the bulk 
value r/. The mean velocity data at the light/clark boundary for 
the numerical experiments are plotted against t 1/2 in Figure 6. 

Figure 6 appears to show that the departure from a common 
slope is more pronounced for the experiments with a varying 
attenuation coefficient. However, a closer study of Figure 6 
indicates that the slopes are in fact similar, with the value of 
1.03 obtained earlier, and that it is the onset time tc of the 
inertial regime that varies. The variation is due in part to the 
fact that the radiation is preferentially absorbed in the surface 
layers, forming the hot boundary layer discussed in the previous 
section. Since this layer is only very slowly moving, heat is not 
being advected away at the rate expected by the scaling, and 
the transition is delayed. 

An estimate of the onset time can be obtained by plotting 
the measured transition time tc to the inertial phase against the 
attenuation coefficient (Figure 7). A least squares analysis yields 

tc = 0.81 - 0.42 loglo ~/ (24) 

and the mean velocity in general would become 

h-]l = 1.03(t 1/2 - t~/2) (25) 

The energy-limited time and velocity scales were obtained 
from Figure 6 as described above (section 5.1) and have been 
tabulated in Table 4. They also show a dependence on the 
attenuation coefficient beyond that predicted by the scaling. To 
facilitate the development of a general equation, we will remove 
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Figure 7 The transition time to the inertial regime tc plotted against 
the attenuation coefficient r/for the experiments of Table 4 

velocities that will occur beneath such mats. We consider a 
small pond typical of swampy areas having a depth of 1 m and 
partially covered with a plant layer. We will assume that an 
area of open water remains, so that the exposed length is 10 m. 
T h u s h = l m a n d l  E = 1 0  m, so that A E=0.1.  

We let the incoming radiation have a maximum surface 
intensity of Fo = 1000 Wm -2 at midday, typical for a cloudless 
summer day in southern Australia (Coates and Ferris 1994), 
and we let the average attenuation coefficient be 2.0 m -x, 
equivalent to assuming that the pond bottom is just visible. 
Using these values, the Grashof number is 4.7 × 10 H and the 
dimensionless attenuation coefficient is 2.0. 

With these parameters, the flow will become energy limited 
after a (nondimensional) time of t F = 67 from Equation 21, and 
the energy-limited velocity from Equation 29 is found to be 
UE = 2.7. These correspond to a real time of 0.5 hours and a 
real velocity of 10 mms-x using the conversions in Equations 
14. This velocity is relatively large, and indicates that over a 
12-hour day at maximum velocity, a typical intrusion in the 
small pond would travel up to 430 meters, carrying nutrients 
to the plants over a large area. 

the Grashof number dependence by scaling the values from 
Table 4 with the values expected at Gr = 10 9, obtained from 
Equations 21 and 22. 

A semilogarithmic plot of the scaled transition times t=/tE 
against the attenuation coefficient (Figure 8) shows a linear 
trend for the single band attenuation coefficient experiments of 
Table 4. The agreement is not as good when the multiple 
attenuation experiments are included, since the scaling cannot 
predict the interaction of the individual bands. Nevertheless, 
the use of a single relation enables a reasonable estimate of the 
transition time to be made under a variety of conditions, and 
as such, it is worth developing such a relation. A least squares 
fit to the data of Figure 8 gives the relation 

te 
- -  = 1 . 3 3  - 0.17 loglo r/  ( 2 6 )  

tE 

o r  

t e = (4.14 - 0.53 logxo q)AE 4/3 (27) 

using the earlier result of tE = 3.11 (Equation 21). 
Similarly, a semilogarithmic plot of the scaled mean 

energy-limited velocity fiU/~E against the attenuation coefficient 
(Figure 9) shows a good agreement to a linear trend for all the 
experiments of Table 4. From these experiments, the mean 
energy-limited velocity is, in general, 

fi 
_ - -  = 0.33 + 0.79 log10 )7 (28) 
UE 

o r  

fi = (0.33 + 0.79 loglo r/X0.80 + 0.02 loglo Gr)Aff 2/3 (29) 

using Equation 22 for ~'~E. Alternatively, over the range 
108 < Gr < 10 lz, the simpler expression 

fi= (0.33 + 0.79 loglo ,,~,4-z/3 (30) ,i,,- =E 

can be used. 

6. An example 

As discussed in section 1, the presence of floating vegetation 
mats can act as an opaque layer on the water surface. The 
equations developed above enable us to estimate the typical 
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Figure 8 The transition times are plotted against Ioglo)7 for the 
numerical simulations for the energy-limited regime. The times have 
been scaled against t E 
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Figure 9 The mean velocities are plotted against Ioglo)1 for the 
numerical simulations for the energy-limited regime. The velocities 
have been scaled against WEE 
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This estimate is an upper limit because the calculation 
assumes that the plants form a completely opaque layer, 
whereas in fact the plant layer is likely to allow some 
transmission of radiation, with a corresponding reduction in 
the temperature differential between the shaded and unshaded 
water. The flow velocity will also be smaller during the early 
part of the day, since the surface intensity and through it the 
Grashof number vary throughout the day. In this example, the 
onset of the energy-limited regime was calculated using the 
midday maximum intensity, while the result indicated that the 
onset time is only a half hour after dawn. Reducing the flux 
will increase the onset time and decrease the velocity. Even 
assuming that these factors reduce the incoming flux to 10% 
of the maximum value, the energy-limited velocity is only 
reduced to 50% of its maximum value, since the Grashof 
number appears as Gr  1/3 in the nondimensionalizing equations 
(Equations 14). Consequently, these intrusions could be of 
importance to the biological dynamics of such ponds. 

7. Conclusions 

A numerical code based on the SIMPLE algorithm and defined 
on a nonstaggered grid was used to simulate the natural 
convection in a cavity that was nonuniformly heated by the 
absorption of radiation entering through the surface. It was 
shown that the results from the code agree with the earlier 
experiments of CP over a range in the radiation parameters. 
The code was then used to extend that parameter range, and 
from the results, empirical relations were derived that would 
enable the intrusion velocities and transition times to be 
determined in more general cases. The velocities at any 
particular radiation flux can be determined by Equations 25 
and 22, with the transition time between these two scales given 
by Equation 21. The radiation flux enters these equations via 
the Grashof number (Equation 1). These velocity and time 
scales can be corrected for the varying attenuation coefficient, 
using Equations 24 to 29. From these relations, the volume of 
water transported by the intrusion can be predicted. A simple 
example showing the application of these equations is given. 
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